IV B.Tech - I Semester – Regular Examinations - DECEMBER 2023

DIGITAL IMAGE PROCESSING (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks				
	UNIT-I								
1	a)	Explain about image sampling and Quantization.	L2	CO1	7 M				
	b)	Explain the fundamental steps in digital image processing.	L2	CO1	7 M				
	OR								
2	a)	Find the shortest m connected path in the image segment given below for V= $\{1,2\}$ between the points p & q. 1 2 3 2 2 2 (q) 4 3 3 2 3 6 1 5 1 6 1 2 1 1 3 3 2 2	L3	CO4	7 M				
	b)	(p) 1 1 0 0 1 1 Explain resolution concept in detail.	L2	CO1	7 M				

	UNIT-II							
3		strate the concept of image sharpening in h spatial and frequency domains.	L3	CO2	14 M			
OR								
4	a)	Explain about image smoothing using Ideal low pass filter.	L2	CO1	7 M			
	b)	Demonstrate the local histogram processing with an example.	L3	CO3	7 M			
UNIT-III								
5	a)	Differentiate lossy & lossless predictive coding techniques.	L4	CO3	7 M			
	b)	Explain image redundancies and removal methods.	L4	CO3	7 M			
	1	OR						
6	a)	Name three reasons why it might be a good idea to compress files.	L2	CO1	7 M			
	b)	The following figure shows a 5×5 image with 5 different grey levels with values shown on the right figure.	L3	CO2	7 M			

UNIT-IV								
7	a)	Illustrate the segmentation in RGB vector space.	L3	CO4	7 M			
	b)	Explain about region oriented segmentation.	L2	CO1	7 M			
	OR							
8	a)	Explain about Edge linking & boundary detection.	L4	CO3	7 M			
	b)	How can you control Over segmentation problem? Explain it	L3	CO4	7 M			
UNIT-V								
9	9 Explain about color fundamentals in image processing.		L2	CO1	14 M			
OR								
10	Dis	cuss about full color image processing.	L3	CO4	14 M			